Not logged in
Talk
Contributions
Log in
Home
Blog
Blog in Deutsch
English Blog
Personal
About Me
Curriculum Vitæ
Study Materials
Science
Works & Projects
Software
Teaching & Acad. Supervision
Downloads
Contact
Contact Details
Facebook
Twitter
YouTube Channel
Imprint
“The universe is full of magical things
patiently waiting for our wits to grow sharper.”
Eden Phillpotts (1862–1960), “
A Shadow Passes”
, Cecil Palmer & Hayward, London, 1918.
Courtesy David Seal/NASA/JPL-Caltech
Editing
Help:Determining the Moment of Inertia Tensor
From M.Eng. René Schwarz, Bremen/Merseburg
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
Die '''Massenmomente 2. Ordnung''' charakterisieren in der Dynamik den ''Widerstand eines starren Körpers gegen eine Änderung seiner Rotationsbewegung''; umgangssprachlich werden Massenmomente 2. Ordnung auch als ''Massenträgheitsmomente'' bezeichnet. Das Massenträgheitsmoment eines Körpers ist abhängig von der Form des Körpers selbst, seiner inneren Struktur (Masse-/Dichteverteilung) sowie der Rotationsachse. Da die Rotationsachse beliebig gewählt sein kann, ist die Angabe eines Skalars für die allgemeine Beschreibung des Massenträgheitsmomentes eines spezifischen Körpers unzureichend; statt dessen kann ein Trägheitstensor $\mathbf{I}$ für einen Körper im $\mathbb{R}^3$ angegeben werden, wobei die Angabe üblicherweise in einem Bezugssystem mit drei paarweise zueinander orthogonalen Koordinatenebenen erfolgt (kartesische Koordinaten mit den Koordinatenachsen $x$, $y$ und $z$): $$\mathbf{I} = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$ Die Diagonalelemente $I_{xx}$, $I_{yy}$ und $I_{zz}$ des Trägheitstensors $\mathbf{I}$ sind die axialen Massenmomente 2. Ordnung und werden ''Trägheitsmomente'' genannt, während die Nebendiagonalelemente $I_{xy}$, $I_{xz}$, $I_{yx}$, $I_{yz}$, $I_{zx}$ und $I_{zy}$ die zentrifugalen Massenmomente 2. Ordnung sind und als ''Deviationsmomente'' bezeichnet werden. Die Trägheitsmomente $I_{xx}$, $I_{yy}$ und $I_{zz}$ sind ein Maß für den Widerstand eines starren Körpers gegen eine Änderung seiner Rotationsbewegung um die entsprechende Koordinatenachse selbst, während die Deviationsmomente $I_{xy}$, $I_{xz}$, $I_{yx}$, $I_{yz}$, $I_{zx}$ und $I_{zy}$ ein Maß für die dynamischen Unwuchten eines rotierenden starren Körpers sind, die durch die i. A. unsymmetrische Massenverteilung des Körpers gegenüber den Koordinatenebenen entstehen. Deviationsmomente verursachen eine Veränderung der Rotationsachse oder bringen dynamische Lagermomente auf; bei einer zweifach gelagerten Welle verursachen sie eine S-förmige Biegung. Die Trägheitsmomente $I_{ii}$ mit $i = {x, y, z}$ werden über $$I_{ii} = \int r_i^2 \dd m$$ berechnet, wobei $r_i$ der euklidische Abstand des jeweilig betrachteten Massepunktes $\mathrm{d} m$ zur jeweiligen Koordinatenachse $i$ ist (z. B. $r_x^2 = y^2 + z^2$). Die Deviationsmomente $I_{ij}$ sind definiert als $$I_{ij} = - \int ij \dd m.$$ == Beispiel: Quader mit homogener Massenverteilung == === Koordinatenursprung im Massenschwerpunkt, Koordinatenachsen entlang der Symmetrieachsen === [[Datei:Sketch Moment of Inertia Tensor Cuboid - Coordinate System.svg|miniatur|300px|rechts|Skizze zur Problemstellung]] $$ \begin{split} I_{xx} &= \int r_x^2 \dd m \xlongequal{r_x^2 = y^2 + z^2} \int (y^2 + z^2) \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho (y^2 + z^2) \dd V \\ &\xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V (y^2 + z^2) \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V (y^2 + z^2) \dd z \dd y \dd x \\ &= \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \int\limits_{-\frac{t}{2}}^{\frac{t}{2}} (y^2 + z^2) \dd z \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left. \left[ y^2 z + \frac{1}{3} z^3 \right] \right|_{z = -\frac{t}{2}}^{z = \frac{t}{2}} \dd y \dd x \\ &= \varrho t \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left( y^2 + \frac{1}{12} t^2 \right) \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \left. \left[ \frac{1}{3} y^3 + \frac{1}{12} t^2 y \right] \right|_{y = -\frac{h}{2}}^{y = \frac{h}{2}} \dd x \\ &= \frac{1}{12} \varrho h t \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} (h^2 + t^2) \dd x = \frac{1}{12} \varrho h t \left. \left[h^2 x + t^2 x \right] \right|_{x = -\frac{b}{2}}^{x = \frac{b}{2}} = \frac{1}{12} \underbrace{\varrho b h t}_{= m} (h^2 + t^2) = {\color{red} \frac{1}{12} m (h^2 + t^2)} \end{split} $$ $$ \begin{split} I_{yy} &= \int r_y^2 \dd m \xlongequal{r_y^2 = x^2 + z^2} \int (x^2 + z^2) \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho (x^2 + z^2) \dd V \\ &\xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V (x^2 + z^2) \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V (x^2 + z^2) \dd z \dd y \dd x \\ &= \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \int\limits_{-\frac{t}{2}}^{\frac{t}{2}} (x^2 + z^2) \dd z \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left. \left[ x^2 z + \frac{1}{3} z^3 \right] \right|_{z = -\frac{t}{2}}^{z = \frac{t}{2}} \dd y \dd x \\ &= \varrho t \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left( x^2 + \frac{1}{12} t^2 \right) \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \left. \left[ x^2 y + \frac{1}{12} t^2 y \right] \right|_{y = -\frac{h}{2}}^{y = \frac{h}{2}} \dd x \\ &= \varrho h t \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \left( x^2 + \frac{1}{12} t^2 \right) \dd x = \varrho h t \left. \left[ \frac{1}{3} x^3 + \frac{1}{12} t^2 x \right] \right|_{x = -\frac{b}{2}}^{x = \frac{b}{2}} = \frac{1}{12} \underbrace{\varrho b h t}_{= m} (b^2 + t^2) = {\color{red} \frac{1}{12} m (b^2 + t^2)} \end{split} $$ $$ \begin{split} I_{zz} &= \int r_z^2 \dd m \xlongequal{r_z^2 = x^2 + y^2} \int (x^2 + y^2) \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho (x^2 + y^2) \dd V \\ &\xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V (x^2 + y^2) \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V (x^2 + y^2) \dd z \dd y \dd x \\ &= \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \int\limits_{-\frac{t}{2}}^{\frac{t}{2}} (x^2 + y^2) \dd z \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left. \left[ x^2 z + y^2 z \right] \right|_{z = -\frac{t}{2}}^{z = \frac{t}{2}} \dd y \dd x \\ &= \varrho t \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left( x^2 + y^2 \right) \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \left. \left[ x^2 y + \frac{1}{3} y^3 \right] \right|_{y = -\frac{h}{2}}^{y = \frac{h}{2}} \dd x \\ &= \varrho h t \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \left( x^2 + \frac{1}{12} h^2 \right) \dd x = \varrho h t \left. \left[ \frac{1}{3} x^3 + \frac{1}{12} h^2 x \right] \right|_{x = -\frac{b}{2}}^{x = \frac{b}{2}} = \frac{1}{12} \underbrace{\varrho b h t}_{= m} (b^2 + h^2) = {\color{red} \frac{1}{12} m (b^2 + h^2)} \end{split} $$ $$ \begin{split} I_{xy} = I_{yx} &= \int xy \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho xy \dd V \xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V xy \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V xy \dd z \dd y \dd x \\ &= \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \int\limits_{-\frac{t}{2}}^{\frac{t}{2}} xy \dd z \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left. \left[ xyz \right] \right|_{z = -\frac{t}{2}}^{z = \frac{t}{2}} \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} 0 \dd y \dd x = {\color{red} 0} \end{split} $$ $$ \begin{split} I_{xz} = I_{zx} &= \int xz \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho xz \dd V \xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V xz \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V xz \dd z \dd y \dd x \\ &= \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \int\limits_{-\frac{t}{2}}^{\frac{t}{2}} xz \dd z \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left. \left[ \frac{1}{2} x z^2 \right] \right|_{z = -\frac{t}{2}}^{z = \frac{t}{2}} \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} 0 \dd y \dd x = {\color{red} 0} \end{split} $$ $$ \begin{split} I_{yz} = I_{zy} &= \int yz \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho yz \dd V \xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V yz \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V yz \dd z \dd y \dd x \\ &= \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \int\limits_{-\frac{t}{2}}^{\frac{t}{2}} yz \dd z \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} \left. \left[ \frac{1}{2} y z^2 \right] \right|_{z = -\frac{t}{2}}^{z = \frac{t}{2}} \dd y \dd x = \varrho \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} \int\limits_{-\frac{h}{2}}^{\frac{h}{2}} 0 \dd y \dd x = {\color{red} 0} \end{split} $$ $$ \color{red} \mathbf{I} = \begin{pmatrix} \frac{1}{12} m (h^2 + t^2) & 0 & 0 \\ 0 & \frac{1}{12} m (b^2 + t^2) & 0 \\ 0 & 0 & \frac{1}{12} m (b^2 + h^2) \end{pmatrix} $$ === Koordinatenursprung in einem Eckpunkt, Koordinatenachsen entlang der Ecken === $$ \begin{split} I_{xx} &= \int r_x^2 \dd m \xlongequal{r_x^2 = y^2 + z^2} \int (y^2 + z^2) \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho (y^2 + z^2) \dd V \\ &\xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V (y^2 + z^2) \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V (y^2 + z^2) \dd z \dd y \dd x \\ &= \varrho \int\limits_{0}^{b} \int\limits_{0}^{h} \int\limits_{0}^{t} (y^2 + z^2) \dd z \dd y \dd x = {\color{red} \frac{1}{3} m (h^2 + t^2)} \end{split} $$ $$ \begin{split} I_{yy} &= \int r_y^2 \dd m \xlongequal{r_y^2 = x^2 + z^2} \int (x^2 + z^2) \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho (x^2 + z^2) \dd V \\ &\xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V (x^2 + z^2) \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V (x^2 + z^2) \dd z \dd y \dd x \\ &= \varrho \int\limits_{0}^{b} \int\limits_{0}^{h} \int\limits_{0}^{t} (x^2 + z^2) \dd z \dd y \dd x = {\color{red} \frac{1}{3} m (b^2 + t^2)} \end{split} $$ $$ \begin{split} I_{zz} &= \int r_z^2 \dd m \xlongequal{r_z^2 = x^2 + y^2} \int (x^2 + y^2) \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho (x^2 + y^2) \dd V \\ &\xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V (x^2 + y^2) \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V (x^2 + y^2) \dd z \dd y \dd x \\ &= \varrho \int\limits_{0}^{b} \int\limits_{0}^{h} \int\limits_{0}^{t} (x^2 + y^2) \dd z \dd y \dd x = {\color{red} \frac{1}{3} m (b^2 + h^2)} \end{split} $$ $$ \begin{split} I_{xy} = I_{yx} &= \int xy \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho xy \dd V \xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V xy \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V xy \dd z \dd y \dd x \\ &= \varrho \int\limits_{0}^{b} \int\limits_{0}^{h} \int\limits_{0}^{t} xy \dd z \dd y \dd x = {\color{red} -\frac{1}{4} mbh} \end{split} $$ $$ \begin{split} I_{xz} = I_{zx} &= \int xz \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho xz \dd V \xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V xz \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V xz \dd z \dd y \dd x \\ &= \varrho \int\limits_{0}^{b} \int\limits_{0}^{h} \int\limits_{0}^{t} xz \dd z \dd y \dd x = {\color{red} -\frac{1}{4} mbt} \end{split} $$ $$ \begin{split} I_{yz} = I_{zy} &= \int yz \dd m \xlongequal{\mathrm{d} m = \varrho \dd V} \int_V \varrho yz \dd V \xlongequal{\varrho \stackrel{!}{=} \text{const.}} \varrho \int_V yz \dd V \xlongequal{\mathrm{d} V = \dd x \dd y \dd z} \varrho \iiint_V yz \dd z \dd y \dd x \\ &= \varrho \int\limits_{0}^{b} \int\limits_{0}^{h} \int\limits_{0}^{t} yz \dd z \dd y \dd x = {\color{red} -\frac{1}{4} mht} \end{split} $$ $$ \color{red} \mathbf{I} = \begin{pmatrix} \frac{1}{3} m (h^2 + t^2) & -\frac{1}{4} mbh & -\frac{1}{4} mbt \\ -\frac{1}{4} mbh & \frac{1}{3} m (b^2 + t^2) & -\frac{1}{4} mht \\ -\frac{1}{4} mbt & -\frac{1}{4} mht & \frac{1}{3} m (b^2 + h^2) \end{pmatrix} $$
Summary:
Please note that all contributions to M.Eng. René Schwarz, Bremen/Merseburg are considered to be released under the Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz (see
web:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)