Not logged in
Talk
Contributions
Log in
Home
Blog
Blog in Deutsch
English Blog
Personal
About Me
Curriculum Vitæ
Study Materials
Science
Works & Projects
Software
Teaching & Acad. Supervision
Downloads
Contact
Contact Details
Facebook
Twitter
YouTube Channel
Imprint
“The universe is full of magical things
patiently waiting for our wits to grow sharper.”
Eden Phillpotts (1862–1960), “
A Shadow Passes”
, Cecil Palmer & Hayward, London, 1918.
Courtesy David Seal/NASA/JPL-Caltech
Editing
Entfernungsberechnung mit Quaternionen und Geodäten
(section)
From M.Eng. René Schwarz, Bremen/Merseburg
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Kurzeinführung in die Quaternionen-Theorie === Quaternionen<ref>Die Menge der Quaternionen wird mit $\mathbb{H}$ bezeichnet.</ref> erweitern die komplexen Zahlen um zwei weitere Dimensionen; es handelt sich somit um hyperkomplexe Zahlen (4-dimensional). Die Struktur ähnelt dabei der komplexer Zahlen: Es existieren ein Realteil und drei Imaginärteile mit den imaginären Einheiten $\ii$, $\jj$ und $\kk$. Ein Quaternion $q$ kann ausführlich mit \begin{equation} q \in \mathbb{H}, \quad q = x_0 + \ii x_1 + \jj x_2 + \kk x_3 \end{equation} oder in Kurzschreibweise \begin{equation} q = \left[ x_0, \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right] \end{equation} geschrieben werden. Dabei ist $x_0$ der Realteil und der Vektor $(x_1,x_2,x_3)^\mathrm{T}$ der 3-dimensionale Imaginärteil. Eine Koordinate $(x,y,z)^\mathrm{T}$ im $\mathbb{R}^3$ kann als Quaternion mit Realteil $0$ und dem Koordinatentripel $(x,y,z)^\mathrm{T}$ als Imaginärteil ausgedrückt werden: \begin{gather} \mathbf{P} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow P = \left[ 0, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \right] \\ \notag \text{mit } \mathbf{P} \in \mathbb{R}^3, P \in \mathbb{H} \end{gather} Rotationen sind mit einem Rotationsquaternion \begin{equation} q_R(\alpha, \mathbf{u}) = \left[ \cos \frac{\alpha}{2}, \sin \frac{\alpha}{2} \cdot \mathbf{u} \right] \end{equation} möglich. Dabei ist $\alpha$ der Rotationswinkel, $\mathbf{u}$ die auf $1$ normierte Rotationsachse ($\mathbf{u} \in \mathbb{R}^3, \| \mathbf{u} \| = 1$). Ein gedrehter Punkt $\mathbf{P}^\star$ entsteht nun durch Multiplikation<ref>Die Quaternionenmultiplikation ist nicht kommutativ. Wichtige Rechenregeln für das hier vorgestellte Verfahren:<br /> '''konjugiert hyperkomplexes Quaternion $\overline{q}$:''' \begin{equation*} q = [x_0, \mathbf{x}] \qquad \overline{q} = [x_0, -\mathbf{x}] \end{equation*} '''Quaternionenmultiplikation (nicht kommutativ):''' \begin{equation*} q_1 \cdot q_2 = [a, \mathbf{v}] \cdot [b, \mathbf{w}] = [ab - \langle \mathbf{v}, \mathbf{w} \rangle, a \mathbf{w} + b \mathbf{v} + \mathbf{v} \times \mathbf{w}] \end{equation*} </ref> des Rotationsquaternions $q_R$ mit dem Quaternion $P$ des Ursprungspunktes $\mathbf{P}$ und dem hyperkomplex konjugierten Rotationsquaternion $\overline{q_R}$: \begin{equation} P^\star = [0, \mathbf{P}^\star ] = q_R(\alpha, \mathbf{u}) \cdot [0, \mathbf{P} ] \cdot \overline{q_R}(\alpha, \mathbf{u}) \end{equation}
Summary:
Please note that all contributions to M.Eng. René Schwarz, Bremen/Merseburg are considered to be released under the Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz (see
web:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)