Not logged in
Talk
Contributions
Log in
Home
Blog
Blog in Deutsch
English Blog
Personal
About Me
Curriculum Vitæ
Study Materials
Science
Works & Projects
Software
Teaching & Acad. Supervision
Downloads
Contact
Contact Details
Facebook
Twitter
YouTube Channel
Imprint
“The universe is full of magical things
patiently waiting for our wits to grow sharper.”
Eden Phillpotts (1862–1960), “
A Shadow Passes”
, Cecil Palmer & Hayward, London, 1918.
Courtesy David Seal/NASA/JPL-Caltech
Editing
Master's Thesis
(section)
From M.Eng. René Schwarz, Bremen/Merseburg
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Thesis Background and Contents (Abstract) == The exploration of the solar system over the last decades has broadened our knowledge and understanding of the universe and our place in it. Great scientific and technological achievements have been made, allowing us to study faraway places in the solar system. The world’s space agencies are now facing a new era of continuing space exploration in the 21st century, expanding permanent human presence beyond low Earth orbit for the first time. To pursue this goal, the development of advanced technologies is more urgent than ever before. One key technology for future human and robotic missions to places distant from Earth will be a system for autonomous navigation and landing of spacecraft, since nowadays navigation systems rely on Earth-based navigation techniques (tracking, trajectory modeling, commanding). A promising approach involves optical navigation technologies, which can operate completely independently of Earth-based support, allowing a surface-relative navigation and landing on celestial bodies without human intervention. The [http://www.dlr.de/en German Aerospace Center (DLR)] is developing a new, holistic optical navigation system for all stages of an approach and landing procedure within the [http://www.dlr.de/irs/de/desktopdefault.aspx/tabid-6657/10924_read-24821/ ATON project (Autonomous Terrain based Optical Navigation)]. The central feature of this new navigation system is its landmark-based navigation. Commonly, craters are used as landmarks, as they exhibit very characteristic shapes and they are stable over the long term with respect to shape, structure and positioning. However, the flawless perception of these surface features by computers is a non-trivial task. [http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6046676 A new edge-free, scale-, pose- and illumination-invariant crater detection algorithm] is developed for ATON, which will do away with the limitations of current algorithms. To promote further development, the possibility of generating realistic surface images of celestial bodies with a significant number of craters and with well-known local illumination conditions is essential, as well as a technique for estimating the local illumination direction on these images. To date, no software exists to generate artificial renderings of realistically illuminated planetary surfaces while determining the local solar illumination direction. Having said this, the objective of this thesis is the development of a surface illumination simulation software for solid planetary surfaces with a significant number of craters, whereas all work has been done in the context of the Moon. The thesis work has led to the development of the ''Moon Surface Illumination Simulation Framework'' (MSISF), which is the first software known to produce realistic renderings of the entire Moon’s surface from virtually every viewpoint, while simultaneously generating machine-readable information regarding the exactly known parameters for the environmental conditions, such as the local solar illumination angle for every pixel of a rendering showing a point on the Moon’s surface. To produce its renderings, the MSISF maintains a global digital elevation model (DEM) of the Moon, using the latest data sets from the ongoing [http://www.nasa.gov/mission_pages/LRO/main/index.html NASA ''Lunar Reconnaissance Orbiter'' (LRO)] mission. The MSISF has also demonstrated its ability to not only produce single renderings, but also whole series of renderings corresponding to a virtual flight trajectory or landing on the Moon. This thesis shows how these renderings will be produced and how they will be suitable for the development and testing of new optical navigation algorithms. The MSISF can also be modified for the rendering of other celestial bodies. With the MSISF, a basis has been established for the further development of the new DLR crater detection algorithm as well as for the illuminance flow estimation on pictures of solid planetary surfaces.
Summary:
Please note that all contributions to M.Eng. René Schwarz, Bremen/Merseburg are considered to be released under the Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz (see
web:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)