Not logged in
Talk
Contributions
Log in
Home
Blog
Blog in Deutsch
English Blog
Personal
About Me
Curriculum Vitæ
Study Materials
Science
Works & Projects
Software
Teaching & Acad. Supervision
Downloads
Contact
Contact Details
Facebook
Twitter
YouTube Channel
Imprint
“The universe is full of magical things
patiently waiting for our wits to grow sharper.”
Eden Phillpotts (1862–1960), “
A Shadow Passes”
, Cecil Palmer & Hayward, London, 1918.
Courtesy David Seal/NASA/JPL-Caltech
Editing
Entfernungsberechnung mit Quaternionen und Geodäten
(section)
From M.Eng. René Schwarz, Bremen/Merseburg
Jump to:
navigation
,
search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Ausgangssituation und theoretische Grundlagen == Die Berechnung der Entfernung zwischen zwei Punkten auf der Erdoberfläche ist nicht trivial, denn die Erde ist keine perfekte Kugel. Tatsächlich hat die Erde, bedingt durch ihre Eigenrotation, die Gestalt eines abgeflachten Rotationsellipsoiden. Um die Position der betrachteten Punkte beschreiben zu können, muss zunächst eine geeignete Parametrisierung dieser Oberfläche erarbeitet werden. Einstweilen wird daher eine Parametrisierung über die vereinfachende Annahme einer Kugelform hergeleitet und später auf das Modell eines abgeflachten Rotationsellipsoiden überführt. === Parametrisierung der Erde als Kugel === Der Sinn und Zweck der Kugelparametrisierung besteht darin, explizite Zusammenhänge für die $x$-, $y$- und $z$-Koordinaten einer Kugel zu erhalten. Die Grundannahme besteht in einer Kugel mit einem gegebenen Radius $r$, deren Mittelpunkt im Koordinatenursprung $(0,0,0)^\mathrm{T}$ liegt. Alle zu betrachtenden Punkte liegen auf der Kugeloberfläche; Höhenunterschiede auf der Kugeloberfläche werden vernachlässigt (keine topografische Modellierung). Jeder Punkt $\tilde{\mathbf{P}}_i$ auf der Kugeloberfläche lässt sich nun durch zwei Winkel $\vartheta_i$ und $\varphi_i$ beschreiben: \begin{gather} \tilde{\mathbf{P}}_i (\vartheta_i,\varphi_i) = \begin{pmatrix} \tilde{P}_x(\vartheta_i,\varphi_i) \\ \tilde{P}_y(\vartheta_i,\varphi_i) \\ \tilde{P}_z(\vartheta_i) \end{pmatrix} = \begin{pmatrix} r \sin \vartheta_i \cos \varphi_i \\ r \sin \vartheta_i \sin \varphi_i \\ r \cos \vartheta_i \end{pmatrix} \\ \text{mit } r = \text{const.}, \vartheta_i \in [0,\pi], \varphi_i \in [0,2\pi[. \notag \end{gather} [[File:Gradnetz erde.svg|thumb|right|250px|Gradnetz der Erde]] Zur Anwendung dieser Parametrisierung auf das Gradnetz der Erde ist eine Winkelanpassung notwendig, denn das Gradnetz der Erde läuft von $180^\circ$ W bis $180^\circ$ E bzw. $90^\circ$ N bis $90^\circ$ S (vgl. nebenstehende Abb.). Bei dieser Gelegenheit wird der bislang noch nicht definierte Radius $r$ mit dem Erdradius $r_{\earth}$ aus dem WGS84-Referenzellipsoiden<ref>Das WGS84 (engl. ''World Geodetic System 1984'') ist ein Referenzsystem für Positionsangaben auf der Erde. Es definiert u.a. den Rotationsellipsoiden der Erde mit seinem Radius der großen Halbachse und seiner Abplattung.</ref> belegt. Dadurch entsteht nun die endgültige Parametrisierung für einen Punkt $\hat{\mathbf{P}}_i$ auf der als Kugel angenommenen Erde mit \begin{gather} \begin{split} \hat{\mathbf{P}}_i (\vartheta_i,\varphi_i) &= \begin{pmatrix} \hat{P}_x(\vartheta_i,\varphi_i) \\ \hat{P}_y(\vartheta_i,\varphi_i) \\ \hat{P}_z(\vartheta_i) \end{pmatrix}\\ &= \begin{pmatrix} r_{\earth} \sin \left( \frac{\pi}{2} - \vartheta_i \right) \cos \varphi_i \\ r_{\earth} \sin \left( \frac{\pi}{2} - \vartheta_i \right) \sin \varphi_i \\ r_{\earth} \cos \left( \frac{\pi}{2} - \vartheta_i \right) \end{pmatrix} \end{split} \\ \text{mit } r_{\earth} = 6\,378\,137\,\text{m}, \vartheta_i \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right], \varphi_i \in \, ]-\pi,\pi]. \notag \end{gather} Die Berechnung der Distanz zwischen zwei Punkten auf der Kugeloberfläche ist unter Annahme der Kugelgestalt sehr einfach zu realisieren, da es sich bei der kürzesten Verbindung beider Punkte immer um ein Bogensegment eines Kreises mit Radius $r_{\earth}$ handelt. Der Winkel $\varepsilon$ zwischen den beiden Ortsvektoren der Punkte definiert das gesuchte Kreisbogensegment, dessen Länge $d$ dann über \begin{equation} d(\varepsilon) = \frac{\pi \cdot r_{\earth}}{180^\circ} \cdot \varepsilon \end{equation} ermittelt werden kann. === Überführung in einen Rotationsellipsoiden === Durch die Einführung eines »stauchenden« Faktors $f$ in der $z$-Koordinate ist die Überführung in einen abgeplatteten Rotationsellipsoiden nun einfach. Der Stauchungsfaktor $f_{\earth}$ entspricht dabei der Abplattung nach WGS84, die das Verhältnis von kleiner zu großer Halbachse des Erd-Rotationsellipsoiden beschreibt. Somit kann ein Punkt $\mathbf{P}_i$ auf dem Rotationsellipsoiden der Erde durch \begin{gather} \begin{split} \mathbf{P}_i (\vartheta_i,\varphi_i) &= \begin{pmatrix} P_x(\vartheta_i,\varphi_i) \\ P_y(\vartheta_i,\varphi_i) \\ P_z(\vartheta_i) \end{pmatrix}\\ &= \begin{pmatrix} r_{\earth} \sin \left( \frac{\pi}{2} - \vartheta_i \right) \cos \varphi_i \\ r_{\earth} \sin \left( \frac{\pi}{2} - \vartheta_i \right) \sin \varphi_i \\ r_{\earth} f_{\earth} \cos \left( \frac{\pi}{2} - \vartheta_i \right) \end{pmatrix} \end{split} \\ \text{mit } r_{\earth} = 6\,378\,137\,\text{m}, f_{\earth} = 1 - \frac{1}{298.257\,223\,563}, \notag \\ \vartheta_i \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right], \varphi_i \in \, ]-\pi,\pi] \notag \end{gather} beschrieben werden. Die Berechnung der Distanz zwischen beiden Punkten entlang der Oberfläche des Rotationsellipsoiden ist nun nicht mehr ohne Weiteres möglich.
Summary:
Please note that all contributions to M.Eng. René Schwarz, Bremen/Merseburg are considered to be released under the Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz (see
web:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)